课程主页:https://www.coursera.org/learn/dsp2

这部分回顾第三周的习题。

1

(Difficulty: $\star$ ) Assume $x[n]$ is a WSS random process with power spectral density $P_{x}\left(e^{j \omega}\right) .$ Which of the following properties are true?

  • $P_{x}\left(e^{j \omega}\right)$ is constant
  • $P_{x}\left(e^{j \omega}\right)$ is symmetric around $\omega=0$
  • $P_{x}\left(e^{j \omega}\right) \geq 0$
  • $P_{x}\left(e^{j \omega}\right)$ is real-valued.

回顾定义

所以显然有

另一方面

所以

最后,利用定义

所以选2,3,4

2

(Difficulty: $\star$ ) Consider a white noise process $w[n]$ with variance $\sigma_{w}^{2}=4 .$ The process goes through a filter with transfer function

to produce a WSS process $x[n]$。
Compute the value of the power spectral density of $x[n]$ in $\omega=\pi / 2$

由定义可得

令$\omega = \pi /2$可得

3

(Difficulty: $\star$) Consider the stochastic process defined as

where $\beta \in \mathbb{R}$ and $x[n]$ is a zero-mean wide-sense stationary process with autocorrelation

$y[n]$ can also be expressed as filtered version of $x[n]$ where the filter’s impulse response $h[n]$ is:

  • $h[n]=\delta[n]-\beta \delta[n-1]$
  • $h[n]=\delta[n]+\beta \delta[n+1]$
  • $h[n]=\delta[n]+\beta \delta[n-1]$
  • $h[n]=\delta[n]-\beta \delta[n+1]$
  • $h[n]=\delta[n+1]+\beta \delta[n]$

利用定义

所以

所以

4

(Difficulty: $\star \star \star)$ Using the same setup as in the previous question, select the correct expression for the power spectral density $P_{y}\left(e^{j \omega}\right)$

  • $P_{y}\left(e^{j \omega}\right)=\sigma(1-\alpha) \frac{1+\beta+2 \cos (\omega)}{1+\alpha-2 \cos (\omega)}$
  • $P_{y}\left(e^{j \omega}\right)=\sigma^{2}\left(1-\alpha^{2}\right) \frac{1+\beta^{2}+2 \beta \cos (\omega)}{1+\alpha^{2}-2 \alpha \cos (\omega)}$
  • $P_{y}\left(e^{j \omega}\right)=\alpha(1-\sigma) \frac{1-\beta^{2}+2 \beta \cos (\omega)}{1+\alpha^{2}-2 \alpha \cos (\omega)}$
  • $P_{y}\left(e^{j \omega}\right)=\frac{1+\beta^{2}+2 \beta \cos (\omega)}{1+\alpha^{2}-2 \alpha \cos (\omega)}$
  • $P_{y}\left(e^{j \omega}\right)=\alpha^{2} \frac{\beta^{2}+2 \beta \cos (\omega)}{\alpha^{2}-2 \alpha \cos (\omega)}$
  • $P_{y}\left(e^{j \omega}\right)=\sigma^{2} \frac{1+\alpha^{2}+2 \alpha \cos (\omega)}{1+\beta^{2}-2 \beta \cos (\omega)}$

首先:

其次:

因为

所以

5

(Difficulty: $\star \star)$ Using the same setup as in the previous questions, assume that the output $y[n]$ turns out to be a white noise sequence. Which of the following statements are necessarily true?

  • The samples of $y[n]$ must be correlated.
  • The samples of $y[n]$ must be uncorrelated.
  • The power spectrum $P_{y}\left(e^{j \omega}\right)$ must be constant.
  • $\beta=-\alpha$
  • $\beta=\alpha$
  • $\beta=2 \alpha$

因为$y[n]$是WSS,所以$P_{y}\left(e^{j \omega}\right)$为常数,因此选2,3,4