这次回顾第二章第六部分习题。

学习资料:

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-001-structure-and-interpretation-of-computer-programs-spring-2005/index.htm

https://github.com/DeathKing/Learning-SICP

https://mitpress.mit.edu/sites/default/files/sicp/index.html

https://www.bilibili.com/video/BV1Xx41117tr?from=search&seid=14983483066585274454

参考资料:

https://sicp.readthedocs.io/en/latest

2.73(p125)

(a)
  1. 判断是否是数字。
  2. 判断exp是否和var相同。
  3. 根据(operator exp)判断deriv的类型,然后调用对应的求导函数。

number?, variable?, same-variable?都无法调用(operator exp),所以无法加入数据导向分派中。

(b), (c)
(load "table_helper.scm")
(load "helper.scm")
(load "2.73_helper.scm")

; basic deriv
(define (deriv exp var)
   (cond ((number? exp) 0)
         ((variable? exp) (if (same-variable? exp var) 1 0))
         (else ((get 'deriv (operator exp)) (operands exp)
                                            var))))

(define (operator exp) (car exp))

(define (operands exp) (cdr exp))

; (b)
(define (install-sum-package)
    (define (derive-sum exp var)
        (make-sum (deriv (addend exp) var)
                  (deriv (augend exp) var)))
    (put 'deriv '+ derive-sum)
    'done)

(define (install-product-package)
    (define (derive-product exp var)
        (make-sum
           (make-product (multiplier exp)
                         (deriv (multiplicand exp) var))
           (make-product (deriv (multiplier exp) var)
                         (multiplicand exp))))
    (put 'deriv '* derive-product)
    'done)

; (c)
(define (install-exponentiation-package)
    (define (derive-exponentiation exp var)
        (let ((b (base exp))
              (e (exponent exp)))
             (make-product
                (make-product e (make-exponentiation b (- e 1)))
                (deriv b var))))
    (put 'deriv '** derive-exponentiation)
    'done)

(install-exponentiation-package)
(install-sum-package)
(install-product-package)

; test
(define a '(+ x 3))
(define b '(* x 5))
(define c '(** x 5))
(newline)
(display (deriv a 'x))
(newline)
(display (deriv b 'x))
(newline)
(display (deriv c 'x))
(exit)

结果如下:

1
5
(* 5 (** x 4))
(d)

修改put部分即可,代码如下:

(load "table_helper.scm")
(load "helper.scm")
(load "2.73_helper.scm")

; basic deriv
(define (deriv exp var)
   (cond ((number? exp) 0)
         ((variable? exp) (if (same-variable? exp var) 1 0))
         (else ((get (operator exp) 'deriv) (operands exp)
                                            var))))

(define (operator exp) (car exp))

(define (operands exp) (cdr exp))

; (b)
(define (install-sum-package)
    (define (derive-sum exp var)
        (make-sum (deriv (addend exp) var)
                  (deriv (augend exp) var)))
    (put '+ 'deriv derive-sum)
    'done)

(define (install-product-package)
    (define (derive-product exp var)
        (make-sum
           (make-product (multiplier exp)
                         (deriv (multiplicand exp) var))
           (make-product (deriv (multiplier exp) var)
                         (multiplicand exp))))
    (put '* 'deriv derive-product)
    'done)

; (c)
(define (install-exponentiation-package)
    (define (derive-exponentiation exp var)
        (let ((b (base exp))
              (e (exponent exp)))
             (make-product
                (make-product e (make-exponentiation b (- e 1)))
                (deriv b var))))
    (put '** 'deriv derive-exponentiation)
    'done)

(install-exponentiation-package)
(install-sum-package)
(install-product-package)

;test
(define a '(+ x 3))
(define b '(* x 5))
(define c '(** x 5))
(newline)
(display (deriv a 'x))
(newline)
(display (deriv b 'x))
(newline)
(display (deriv c 'x))
(exit)

结果如下:

1
5
(* 5 (** x 4))

2.74(p126)

分为两层结构。

第一层:

op 			type
getRecord	 companyName  -> set

第二层:

op 			type
getData	 	address
getData      salary 

具体实现从略。

2.75(p128)

(define (make-from-mag-ang r a)
  (define (dispatch op)
    (cond ((eq? op 'magnitude) r)
          ((eq? op 'angle) a)
          ((eq? op 'real-part) (* r (cos a)))
          ((eq? op 'imag-part) (* r (sin a)))
          (else
           (error "Unknown op -- MAKE-FROM-REAL-IMAG" op))))
  dispatch)

; test
(define a (make-from-mag-ang 1 0))
(newline)
(display (a 'magnitude))
(newline)
(display (a 'angle))
(newline)
(display (a 'real-part))
(newline)
(display (a 'imag-part))
(exit)

结果如下:

1
0
1
0

2.76(p128)

  • 显示分派:最糟糕。
  • 数据导向(按行):适合加入新操作。
  • 消息传递(按列):适合增加新类型。

2.77(p132)

参考资料:

https://sicp.readthedocs.io/en/latest/chp2/77.html

报错原因是因为不存在type为complex,op为magnitude的函数。

整体结构

  • arithmetic.scm
    • tag.scm
    • apply.scm
    • table_helper.scm
    • complex.scm
    • scheme_ari.scm
    • rational_ari.scm
    • complex_ari.scm

运行代码如下:

(load "arithmetic.scm")

(define (add x y) (apply-generic 'add x y))
(define (sub x y) (apply-generic 'sub x y))
(define (mul x y) (apply-generic 'mul x y))
(define (div x y) (apply-generic 'div x y))
(define (magnitude z) (apply-generic 'magnitude z))

(define z1 (make-complex-from-real-imag 1 2))
(define z2 (make-complex-from-real-imag 2 2))
(define z3 (add z1 z2))

(newline)
(display z3)
(newline)
(display (magnitude z3))
(exit)

结果如下:

(complex rectangular 3 . 4)
5

每个部分分别如下:

arithmetic.scm(自己编写):

(load "tag.scm")
(load "apply.scm")
(load "table_helper.scm")
(load "helper.scm")
(load "complex.scm")
(load "scheme_ari.scm")
(load "rational_ari.scm")
(load "complex_ari.scm")

(install-rectangular-package)
(install-polar-package)
(install-scheme-number-package)
(install-rational-package)
(install-complex-package)

tag.scm:

(define (attach-tag type-tag contents)
  (cons type-tag contents))

(define (type-tag datum)
  (if (pair? datum)
      (car datum)
      (error "Bad tagged datum -- TYPE-TAG" datum)))

(define (contents datum)
  (if (pair? datum)
      (cdr datum)
      (error "Bad tagged datum -- CONTENTS" datum)))

apply.scm:

(define (apply-generic op . args)
  (let ((type-tags (map type-tag args)))
    (let ((proc (get op type-tags)))
      (if proc
          (apply proc (map contents args))
          (error
            "No method for these types -- APPLY-GENERIC"
            (list op type-tags))))))

该函数对不同类型变量调用通用的方法。

table_helper.scm:

(define false #f)
(define true #t)

;; local tables
(define (make-table)
  (let ((local-table (list '*table*)))
    (define (lookup key-1 key-2)
      (let ((subtable (assoc key-1 (cdr local-table))))
        (if subtable
            (let ((record (assoc key-2 (cdr subtable))))
              (if record
                  (cdr record)
                  false))
            false)))
    (define (insert! key-1 key-2 value)
      (let ((subtable (assoc key-1 (cdr local-table))))
        (if subtable
            (let ((record (assoc key-2 (cdr subtable))))
              (if record
                  (set-cdr! record value)
                  (set-cdr! subtable
                            (cons (cons key-2 value)
                                  (cdr subtable)))))
            (set-cdr! local-table
                      (cons (list key-1
                                  (cons key-2 value))
                            (cdr local-table)))))
      'ok)    
    (define (dispatch m)
      (cond ((eq? m 'lookup-proc) lookup)
            ((eq? m 'insert-proc!) insert!)
            (else (error "Unknown operation -- TABLE" m))))
    dispatch))

(define operation-table (make-table))
(define get (operation-table 'lookup-proc))
(define put (operation-table 'insert-proc!))

complex.scm:

;; complex number
(define (install-rectangular-package)
  ;; internal procedures
  (define (real-part z) (car z))
  (define (imag-part z) (cdr z))
  (define (make-from-real-imag x y) (cons x y))
  (define (magnitude z)
    (sqrt (+ (square (real-part z))
             (square (imag-part z)))))
  (define (angle z)
    (atan (imag-part z) (real-part z)))
  (define (make-from-mag-ang r a) 
    (cons (* r (cos a)) (* r (sin a))))

  ;; interface to the rest of the system
  (define (tag x) (attach-tag 'rectangular x))
  (put 'real-part '(rectangular) real-part)
  (put 'imag-part '(rectangular) imag-part)
  (put 'magnitude '(rectangular) magnitude)
  (put 'angle '(rectangular) angle)
  (put 'make-from-real-imag 'rectangular
       (lambda (x y) (tag (make-from-real-imag x y))))
  (put 'make-from-mag-ang 'rectangular
       (lambda (r a) (tag (make-from-mag-ang r a))))

  (put 'equ? '(rectangular rectangular)
       (lambda (z1 z2) (and (= (real-part z1) (real-part z2))
                            (= (imag-part z1) (imag-part z2)))))
  (put 'zero? '(rectangular)
       (lambda (z) (and (= (real-part z) 0)
                        (= (imag-part z) 0))))
  'done)

(define (install-polar-package)
  ;; internal procedures
  (define (magnitude z) (car z))
  (define (angle z) (cdr z))
  (define (make-from-mag-ang r a) (cons r a))
  (define (real-part z)
    (* (magnitude z) (cos (angle z))))
  (define (imag-part z)
    (* (magnitude z) (sin (angle z))))
  (define (make-from-real-imag x y) 
    (cons (sqrt (+ (square x) (square y)))
          (atan y x)))

  ;; interface to the rest of the system
  (define (tag x) (attach-tag 'polar x))
  (put 'real-part '(polar) real-part)
  (put 'imag-part '(polar) imag-part)
  (put 'magnitude '(polar) magnitude)
  (put 'angle '(polar) angle)
  (put 'make-from-real-imag 'polar
       (lambda (x y) (tag (make-from-real-imag x y))))
  (put 'make-from-mag-ang 'polar
       (lambda (r a) (tag (make-from-mag-ang r a))))

  ;新增
  (put 'equ? '(polar polar)
       (lambda (z1 z2) (and (= (real-part z1) (real-part z2))
                            (= (imag-part z1) (imag-part z2)))))
  (put 'zero? '(polar)
       (lambda (z) (= (magnitude z) 0)))
  'done)

scheme_ari.scm(新增apply-generic部分以及put部分):

;; arithmetic operations
(define (install-scheme-number-package)
  (define (tag x)
    (attach-tag 'scheme-number x))
  (put 'add '(scheme-number scheme-number)
       (lambda (x y) (tag (+ x y))))
  (put 'sub '(scheme-number scheme-number)
       (lambda (x y) (tag (- x y))))
  (put 'mul '(scheme-number scheme-number)
       (lambda (x y) (tag (* x y))))
  (put 'div '(scheme-number scheme-number)
       (lambda (x y) (tag (/ x y))))
  (put 'make 'scheme-number
       (lambda (x) (tag x)))
  
  ;新增
  (put 'equ? '(scheme-number scheme-number)
       (lambda (x y) (= x y)))
  (put 'zero? '(scheme-number)
       (lambda (x) (= x 0)))
  'done)

(define (make-scheme-number n)
  ((get 'make 'scheme-number) n))

rational_ari.scm:

(define (install-rational-package)
  ;; internal procedures
  (define (numer x) (car x))
  (define (denom x) (cdr x))
  (define (make-rat n d)
    (let ((g (gcd n d)))
      (cons (/ n g) (/ d g))))
  (define (add-rat x y)
    (make-rat (+ (* (numer x) (denom y))
                 (* (numer y) (denom x)))
              (* (denom x) (denom y))))
  (define (sub-rat x y)
    (make-rat (- (* (numer x) (denom y))
                 (* (numer y) (denom x)))
              (* (denom x) (denom y))))
  (define (mul-rat x y)
    (make-rat (* (numer x) (numer y))
              (* (denom x) (denom y))))
  (define (div-rat x y)
    (make-rat (* (numer x) (denom y))
              (* (denom x) (numer y))))
  ;; interface to rest of the system
  (define (tag x) (attach-tag 'rational x))
  (put 'add '(rational rational)
       (lambda (x y) (tag (add-rat x y))))
  (put 'sub '(rational rational)
       (lambda (x y) (tag (sub-rat x y))))
  (put 'mul '(rational rational)
       (lambda (x y) (tag (mul-rat x y))))
  (put 'div '(rational rational)
       (lambda (x y) (tag (div-rat x y))))

  (put 'make 'rational
       (lambda (n d) (tag (make-rat n d))))
  
  ;新增
  (put 'equ? '(rational rational)
       (lambda (x y) (= (* (numer x) (denom y))
                        (* (numer y) (denom x)))))
  (put 'zero? '(rational)
       (lambda (x) (= (numer x) 0)))
  'done)

(define (make-rational n d)
  ((get 'make 'rational) n d))

complex_ari.scm:

;新增
(define (real-part z) (apply-generic 'real-part z))
(define (imag-part z) (apply-generic 'imag-part z))
(define (magnitude z) (apply-generic 'magnitude z))
(define (angle z) (apply-generic 'angle z))
(define (equ? z1 z2) (apply-generic 'equ? z1 z2))
(define (zero? z) (apply-generic 'zero? z))

(define (install-complex-package)
  ;; imported procedures from rectangular and polar packages
  (define (make-from-real-imag x y)
    ((get 'make-from-real-imag 'rectangular) x y))
  (define (make-from-mag-ang r a)
    ((get 'make-from-mag-ang 'polar) r a))
  ;; internal procedures
  (define (add-complex z1 z2)
    (make-from-real-imag (+ (real-part z1) (real-part z2))
                         (+ (imag-part z1) (imag-part z2))))
  (define (sub-complex z1 z2)
    (make-from-real-imag (- (real-part z1) (real-part z2))
                         (- (imag-part z1) (imag-part z2))))
  (define (mul-complex z1 z2)
    (make-from-mag-ang (* (magnitude z1) (magnitude z2))
                       (+ (angle z1) (angle z2))))
  (define (div-complex z1 z2)
    (make-from-mag-ang (/ (magnitude z1) (magnitude z2))
                       (- (angle z1) (angle z2))))

  ;; interface to rest of the system
  (define (tag z) (attach-tag 'complex z))
  (put 'add '(complex complex)
       (lambda (z1 z2) (tag (add-complex z1 z2))))
  (put 'sub '(complex complex)
       (lambda (z1 z2) (tag (sub-complex z1 z2))))
  (put 'mul '(complex complex)
       (lambda (z1 z2) (tag (mul-complex z1 z2))))
  (put 'div '(complex complex)
       (lambda (z1 z2) (tag (div-complex z1 z2))))
  (put 'make-from-real-imag 'complex
       (lambda (x y) (tag (make-from-real-imag x y))))
  (put 'make-from-mag-ang 'complex
       (lambda (r a) (tag (make-from-mag-ang r a))))

  ;新增
  (put 'real-part '(complex) real-part)
  (put 'imag-part '(complex) imag-part)
  (put 'magnitude '(complex) magnitude)
  (put 'angle '(complex) angle)

  ;新增
  (put 'equ? '(complex complex) equ?)
  (put 'zero? '(complex) zero?)
  'done)

(define (make-complex-from-real-imag x y)
  ((get 'make-from-real-imag 'complex) x y))

(define (make-complex-from-mag-ang r a)
  ((get 'make-from-mag-ang 'complex) r a))

2.78(p132)

(load "tag_v1.scm")
(load "apply.scm")
(load "table_helper.scm")
(load "helper.scm")
(load "complex.scm")
(load "scheme_ari_v1.scm")
(load "rational_ari.scm")
(load "complex_ari.scm")

(install-rectangular-package)
(install-polar-package)
(install-scheme-number-package)
(install-rational-package)
(install-complex-package)

(define (add x y) (apply-generic 'add x y))
(define (sub x y) (apply-generic 'sub x y))
(define (mul x y) (apply-generic 'mul x y))
(define (div x y) (apply-generic 'div x y))
(define (magnitude z) (apply-generic 'magnitude z))

(define (test x y)
    (display "x: ")
    (display x)
    (newline)
    (display "y: ")
    (display y)
    (newline)
    (display (add x y))
    (newline)
    (display (sub x y))
    (newline)
    (display (mul x y))
    (newline)
    (display (div x y))
    (newline))

(define a1 (make-scheme-number 1))
(define a2 (make-scheme-number 2))
(define b1 (make-rational 1 3))
(define b2 (make-rational 2 3))
(define z1 (make-complex-from-real-imag 1 2))
(define z2 (make-complex-from-real-imag 2 2))

(test a1 a2)
(test b1 b2)
(test z1 z2)
(exit)

结果如下:

x: 1
y: 2
3
-1
2
1/2
x: (rational 1 . 3)
y: (rational 2 . 3)
(rational 1 . 1)
(rational 1 . -3)
(rational 2 . 9)
(rational 1 . 2)
x: (complex rectangular 1 . 2)
y: (complex rectangular 2 . 2)
(complex rectangular 3 . 4)
(complex rectangular -1 . 0)
(complex polar 6.324555320336759 . 1.8925468811915387)
(complex polar 0.7905694150420948 . 0.32175055439664213)

修改的部分:

tag_v1.scm:

(define (attach-tag type-tag contents)
  (cons type-tag contents))

(define (type-tag datum)
    (cond ((number? datum) 'scheme-number)
          ((pair? datum) (car datum))
          (else (error "Bad tagged datum -- TYPE-TAG" datum))))

(define (contents datum)
    (cond ((number? datum) datum)
          ((pair? datum) (cdr datum))
          (else (error "Bad tagged datum -- CONTENTS" datum))))

scheme_ari_v1.scm:

;; arithmetic operations
(define (install-scheme-number-package)
  (put 'add '(scheme-number scheme-number)
       (lambda (x y) (+ x y)))
  (put 'sub '(scheme-number scheme-number)
       (lambda (x y) (- x y)))
  (put 'mul '(scheme-number scheme-number)
       (lambda (x y) (* x y)))
  (put 'div '(scheme-number scheme-number)
       (lambda (x y) (/ x y)))
  (put 'make 'scheme-number
       (lambda (x) x))
  'done)

(define (make-scheme-number n)
  ((get 'make 'scheme-number) n))

以下两题新增的部分见2.77

2.79(p132)

(load "arithmetic.scm")

(define (equ? x y) (apply-generic 'equ? x y))

(define (test x y)
    (display "x: ")
    (display x)
    (newline)
    (display "y: ")
    (display y)
    (newline)
    (display (equ? x y))
    (newline))

(define a1 (make-scheme-number 1))
(define a2 (make-scheme-number 2))
(define b1 (make-rational 1 3))
(define b2 (make-rational 2 3))
(define z1 (make-complex-from-real-imag 1 2))
(define z2 (make-complex-from-real-imag 2 2))

; test
(test a1 a2)
(test a1 a1)
(test b1 b2)
(test b1 b1)
(test z1 z2)
(test z1 z1)
(exit)

结果如下:

x: (scheme-number . 1)
y: (scheme-number . 2)
#f
x: (scheme-number . 1)
y: (scheme-number . 1)
#t
x: (rational 1 . 3)
y: (rational 2 . 3)
#f
x: (rational 1 . 3)
y: (rational 1 . 3)
#t
x: (complex rectangular 1 . 2)
y: (complex rectangular 2 . 2)
#f
x: (complex rectangular 1 . 2)
y: (complex rectangular 1 . 2)
#t

2.80(p132)

(load "arithmetic.scm")

(define (zero? x) (apply-generic 'zero? x))

(define (test x)
    (display "x: ")
    (display x)
    (newline)
    (display (zero? x))
    (newline))

(define a1 (make-scheme-number 1))
(define a2 (make-scheme-number 0))
(define b1 (make-rational 1 3))
(define b2 (make-rational 0 6))
(define z1 (make-complex-from-real-imag 1 2))
(define z2 (make-complex-from-real-imag 0 0))
(define z3 (make-complex-from-mag-ang 1 0))
(define z4 (make-complex-from-mag-ang 0 5))

; test
(test a1)
(test a2)
(test b1)
(test b2)
(test z1)
(test z2)
(test z3)
(test z4)
(exit)

结果如下:

x: (scheme-number . 1)
#f
x: (scheme-number . 0)
#t
x: (rational 1 . 3)
#f
x: (rational 0 . 1)
#t
x: (complex rectangular 1 . 2)
#f
x: (complex rectangular 0 . 0)
#t
x: (complex polar 1 . 0)
#f
x: (complex polar 0 . 5)
#t