Digital Signal Processing 1 Basic Concepts and Algorithms Week3
课程主页:https://www.coursera.org/learn/dsp1
这一讲介绍了Fourier Analysis: the Basics。
通过改变基向量进行探索
数学设置
- 让我们从有限长度的信号开始(即$ \mathbb {C} ^ {N} $中的向量)
- 傅立叶分析是对基向量的简单变换
- 基向量的改变会改观点
- 改变观点可以揭示事物(如果基向量选的好)
$\mathbb C^N$中的傅里叶基向量
$\left\{\mathbf{w}^{(k)}\right\}_{k=0,1}, \ldots, N-1$是$\mathbb C^N$中正交基,其中$\mathbf w_{n}^{(k)}=e^{j \frac{2 \pi}{N} n k}$,也记作$\mathbf w_k[n]$。
证明:
注意上述基向量不是标准正交的,要得到标准正交基需要乘以$\frac 1 {\sqrt N}$
DFT(离散傅里叶变换)
基本公式
利用坐标变换的原理得到基本公式。
分析公式:
合成公式:
向量形式
定义
那么基变换矩阵为$\mathbf{W}$,其中$\mathbf{W}[n, m]=W_{N}^{n m}$:
那么基本公式的向量形式如下。
分析公式:
合成公式:
信号形式
分析公式:
合成公式:
例子
例1
进行DFT得到:
例2
进行DFT得到:
例3
首先对形式进行改写:
进行DFT得到:
例4
首先对形式进行改写:
进行DFT得到:
例5
进行DFT得到:
DFT图的解释
能量分布
回顾Parseval等式:
所以
(注意这里基向量的模长为$N$)
实信号的DFT
对于实信号,我们有
所以
所以
习题
1
(Difficulty: $\star$ ) Write out the phase of the complex numbers $a_{1}=1-\mathrm{j}$ and $a_{2}=-1-\mathrm{j}$
Express the phase in degrees and separate the two phases by a single white space. Each phase should be a number in the range [-180,180]
-45 -135
2
(Difficulty: $\star$ ) Let $W_{N}^{k}=e^{-\mathrm{j} \frac{2 \pi} Nk} $ and $N>1$. Then $W_{N}^{N / 2}$ is equal to…
- -1
- 1
- $-\mathrm{j}$
- $e^{-j(2 \pi / N)+N}$
3
(Difficulty: $\star$ ) Which of the following signals (continuous- and discrete-time) are periodic signals?
Note that $t \in \mathbb{R}$ and $n \in \mathbb{Z}$
- $x[n]=\sin (n)$
- $x(t)=t- \text{floor} (t)$
- $x[n]=e^{-\mathrm{j} f_{0} n}+e^{+\mathrm{j} f_{0} n},$ where $f_{0}=\sqrt{2}$
- $x(t)=\cos \left(2 \pi f_{0} t+\phi\right)$ with $f_{0} \in \mathbb{R}$
- $x[n]=1$
周期函数如下:
- $x(t)=t- \text{floor} (t)$
- $x(t)=\cos \left(2 \pi f_{0} t+\phi\right)$ with $f_{0} \in \mathbb{R}$
- $x[n]=1$
4
(Difficulty: $\star \star \star)$ Choose the correct statements from the choices below.
- Consider the length- $N$ signal $x[n]=(-1)^{n}$ with $N$ even. Then $X[k]=0$ for all $k$ except $k=N / 2$
- If we apply the DFT twice to a signal $x[n],$ we obtain the signal itself scaled by $N$, i.e. $N x[n]$
- Consider the length- $N$ signal $x[n]=\cos \left(\frac{2 \pi}{N} L n+\phi\right),$ where $N$ is even and $L=N / 2 .$ Then $X[k]=\left\{\begin{array}{ll}\frac{N}{2} e^{\mathrm{j} \phi} & \text { for } k=L \\ 0 & \text { otherwise }\end{array}\right.$
选项1:
所以该选项正确。
选项2:
见补充习题1,该选项错误。
选项3:
所以该选项正确。
5
(Difficulty: $\star$ ) Consider the Fourier basis $\left\{\mathbf{w}^{k}\right\}_{k=0, \ldots, N-1},$ where $\mathbf{w}^{k}[n]=e^{-j \frac{2 \pi}{N} n k}$ for $0 \leq n \leq N-1$
Select the correct statement below.
The orthogonality of the vectors depends on the length $N$ of the elements of the basis
The elements of the basis are orthogonal:
$\left\langle\mathbf{w}^{i}, \mathbf{w}^{j}\right\rangle=\left\{\begin{array}{ll}N & \text { for } i=j \\ 0 & \text { otherwise }\end{array}\right.$
The elements of the basis are orthonormal:
$\left\langle\mathbf{w}^{i}, \mathbf{w}^{j}\right\rangle=\left\{\begin{array}{ll}1 & \text { for } i=j \\ 0 & \text { otherwise }\end{array}\right.$
显然第二项正确
6
(Difficulty: $\star \star)$ Consider the three sinusoids of length $N=64$ as illustrated in the above figure; note that the signal values are shown from $n=0$ to $n=63$
Call $y_{1}[n]$ the blue signal, $y_{2}[n]$ the green and $y_{3}[n]$ the red. Further, define $x[n]=y_{1}[n]+y_{2}[n]+y_{3}[n]$
Choose the correct statements from the list below. Note that the capital letters indicate the DFT vectors.
- $Y_{1}[k]=\left\{\begin{array}{ll}N & \text { for } k=4,60 \\ 0 & \text { otherwise }\end{array}\right.$
- $Y_{3}[k]=\left\{\begin{array}{ll}32 & \text { for } k=0 \\ 32 & \text { for } k=64 \\ 0 & \text { otherwise }\end{array}\right.$
- $Y_{2}[k]=\left\{\begin{array}{ll}16 j & \text { for } k=8 \\ 16 j & \text { for } k=56 \\ 0 & \text { otherwise }\end{array}\right.$
- $|x|_{2}^{2}=|X|_{2}^{2}=12800$
首先写出信号:
所以
另一方面
因此选则第1项
7
(Difficulty: $\star \star \star)$ Consider the length- $N$ signal
where $M$ and $L$ are integer parameter with $0<L \leq N-1,0<M \leq N$
Choose the correct statements among the choices below.
- Consider the circularly shifted signal $y[n]=x[(n-D) \bmod N] .$ In the Fourier domain, since the DFT operator is shift invariant, it is $Y[k]=X[k]$
- In general, it will be easier to compute the norm of the signal $|\mathbf{x}|_{2}$ in the Fourier domain, using the Parseval’s Identity.
- If $M=N$ and $2 L<N$, the signal has exactly $L$ periods for $0 \leq n<N$
- For every choice of $N$ and $M$, the DFT $X[k]$ has two elements different from zero.
注意在选项3的条件下,周期为$ \frac M L$,所以在$0 \leq n<N$该区间内有$L$个周期,第四项由前一题的讨论可知正确。
选择3,4
8
(Difficulty: $\star$ ) Consider an orthogonal basis $\left\{\phi_{i}\right\}_{i=0, \ldots, N-1}$ for $\mathbb{R}^{N}$. Select the statements that hold for any
vector $\mathbf{x} \in \mathbb{R}^{N}$.
- $|\mathbf{x}|_{2}^{2}=\sum_{i=0}^{N-1}\left|\left\langle x, \phi_{i}\right\rangle\right|^{2}$
- $|\mathbf{x}|_{2}^{2}=\sum_{i=0}^{N-1}\left|\left\langle x, \phi_{i}\right\rangle\right|^{2}$ if and only if $\left|\phi_{i}\right|_{2}=1 \forall i$.
- $\begin{array}{l}|\mathbf{x}|_{2}^{2}=\frac{1}{P} \sum_{i=0}^{N-1}\left|\left\langle x, \phi_{i}\right\rangle\right|^{2} , \text { if and only if }\left|\phi_{i}\right|_{2}=P \forall i \text { . }\end{array}$
- $|\mathbf{x}|_{2}^{2}=\frac{1}{P} \sum_{i=0}^{N-1}\left|\left\langle x, \phi_{i}\right\rangle\right|^{2}$ if and only if $\left|\phi_{i}\right|_{2}^{2}=P \forall i$
利用如下公式即可
其中
所以选2,4
9
(Difficulty: $\star \star)$ Pick the correct sentence(s) among the following ones regarding the DFT $\mathbf{X}$ of a signal $\mathbf{x}$ of length $N,$ where $N$ is odd.
Remember the following definitions for an arbitrary signal (asterisk denotes conjugation):
hermitian-symmetry: $x[0]$ real and $x[n]=x[N-n]^{}$ for $n=1, \ldots, N-1$
hermitian-antisymmetry: $x[0]=0$ and $x[n]=-x[N-n]^{}$ for $n=1, \ldots, N-1$
- If the signal $\mathbf{x}$ is hermitian-symmetric, then its DFT is real.
- If the signal $\mathbf{x}$ is purely real, then the DFT $\mathbf{X}$ is purely imaginary.
- If the signal $\mathbf{x}$ is hermitian antisymmetric, then its DFT $\mathbf{X}$ is purely imaginary.
- If the signal $\mathbf{x}$ is hermitian-symmetric, then the DFT $\mathbf{X}$ is also hermitian-symmetric.
回顾DFT:
如果$\mathrm x$满足hermitian-symmetric,那么
所以$X[k]$为实数。
如果$\mathrm x$满足hermitian antisymmetric,那么
所以$X[k]$为纯虚数。
如果$\mathrm x$是实数,那么
补充习题
1
计算
利用定义可得
注意到
那么
2
考虑$\mathbf x\in \mathbb C^N$,$N$为偶数,DFT为$\mathbf X$,定义
计算$\mathbf y$
利用定义可得:
这里要使用如下技巧:
那么